Official Raz Veinz Blogsite

Posts Tagged Type R

Honda Civic FD2 Type-R K20A – The Art to Make the Dreaming Power

Posted in My Automotive Life | No Comments »

This is my continuation of my entry – Honda Civic EK9 Type-R B16B – The Art of Automotive Engineering – This is about how an artist refine they tools, to make another masterpiece! If want to talk about Civic Type-R, Why not including the EP3 and FN2 chassis? Not racist or something like that, but I only consider JDM-Spec version is the real Civic Type-R, available in Japan and Malaysia only! (It was the first time that any Type R JDM model was launched outside of Japan).



The Honda Civic Type R is the highest performance version of the Honda Civic made by Honda Motor Company of Japan. It features a lightened and stiffened body, specially tuned engine and upgraded brakes and chassis. Red is also used in the interior to give it a special sporting distinction and to separate it from other Honda models. In Japan, a one-make series of Honda Type R cars where privateers can purchase an off-road Type R and compete in a series championship is a stepping stone for many aspiring racing drivers.

FD2 chassis (Asian version)

The Japanese market Civic Type R (FD2) went on sale on March 30, 2007. For the first time, the JDM Civic was sold as a four-door sports sedan rather than a three-door hot hatch. Using the Japanese market four-door sedan as a base model meaning the new Type R is now bigger, wider and heavier. More importantly, the wheelbase has grown from 2,570 mm (101.2 in) to 2,700 mm (106.3 in), giving the FD2R a more stable stance in high speed cornering. The new Japanese model’s engine output is higher than the European version’s, with 225 PS (165 kW; 222 hp) being developed at 8,400 rpm and 215 N·m (159 lb·ft) of torque peaking at 6,100 rpm (versus 201 PS (148 kW; 198 hp) at 7,800 rpm and 193 N·m (142 lb·ft) at 5,600 rpm for the European model). The base engine itself is borrowed from the Accord Euro R CL7 with its longer intake manifold. Changes have been made to the block in terms of mounting points for ancillary parts making it different from previous K20A. New technology such as drive-by-wire throttle and porting of the intake valve ports using techniques from the NSX are implemented. Honda says mid-range is increased by 10 PS (7 kW; 10 hp). Drive is fed through a close-ratio six-speed gearbox, and a helical limited slip differential is fitted as standard. The front brake discs increased from the DC5R’s 300 mm (11.8 in) to 320 mm (12.6 in) are fitted with four pot Brembo calipers. Tire size are now 225/40 R18 Bridgestone Potenza RE070.

Exterior wise, the front bumper is different from the standard Civic designed aerodynamically. The rear bumper features a diffuser built into the bumper and completing the aero package with a huge rear wing. Inside, the trademark black and red bucket seats are no longer made by Recaro as with previous versions, but designed in house by Honda. Also gone is the Momo made steering wheel, instead replaced by a Honda made version. The familiar red-on-black colour scheme or black-on-black scheme is offered on the Championship White version and Super Platinum Metallic Silver versions while a black-on-black scheme with red stitching is for the Vivid Blue Pearl only.

In October 2008, the Civic received a minor face lift. The standard and hybrid versions now had the same front bumper as the Type R while a redesigned tail lamps changes the round insets into octagons. The Type R also received new available colours, with Premium White Pearl, Premium Deep Violet Pearl and Crystal Black Pearl being added and Vivid Blue Pearl being dropped.

In back to back tests the FD2 Type-R was on average 1 second quicker than the (DC5) Integra Type-R at the Tsukuba Circuit and four seconds faster at the longer Suzuka Circuit.

In a back to back test on the United Kingdom TV program 5th Gear, the FD2 Type-R was three seconds quicker than the equivalent FN2 UK version around Castle Combe Circuit in the wet. Source :

– End of Introduction –

There is nothing to compare with the base model, so, comparison should be make with the close cousin, Honda Integra DC5 Type-R,


Model Variant TYPE R TYPE R
Car Series ABA-FD2 LA-DC5
Year 2007 – 2010 2001 – 2006
Doors and Body Style 4DR Sedan 3DR Hatch
Engine Size 1998 cc K20A Spec R 1998 cc K20A Spec R
Cylinders 4 4
Transmission 6M with Torque sensitive Helical LSD 6M with Torque sensitive Helical LSD
Front Brakes BREMBO aluminum 4 pot calipers,320mm Vented Discs, Exclusive setting ABS BREMBO aluminum 4 pot calipers, 300mm Vented Discs, ABS
Rear Brakes 282mm Disc 262mm Disc
Wheel Dimension 225/40R18 215/45R17
Turning Circle 11.8m 11.4m
Tank Capacity 50 liters 50 liters
Exterior Length 4540mm 4385mm
Exterior Width 1770mm 1725mm
Exterior Height 1430mm 1385mm
Front Track 1505mm 1485mm
Rear Track 1515mm 1485mm
Wheel Base 2700mm 2570mm
Front Suspension McPherson Strut McPherson Strut
Rear Suspension Double Wishbone Double Wishbone
Kerb Weight 1270kg1250 kg (non-mounted air conditioner) 1180kg
Stabilizer (F/R) size 26.3mm/21.4mm 23.8×2.8mm (Hollow) / 22mm (Solid)
Wheel size 18Inch 17Inch
Ground Clearance 135mm 130mm
Top Speed 231+ km/h (JDM limited to 187 km/h) 235+ km/h (JDM limited to 187 km/h)

Power Section


Engine Type K20A DOHC i-VTEC Spec R JDM N/A K20A DOHC i-VTEC Spec R JDM N/A
Bore and Stroke 86.0 x 86.0 mm 86.0 x 86.0 mm
Maximum Output 225bhp /8000rpm 220bhp /8000rpm
Maximum Torque 21.9kg-m/6100rpm 21kg-m/7000rpm
Displacement 1998cc 1998cc
Compression 11.7:1 11.5:1
Maximum RPM 8400rpm 8400rpm
Spark Plug Type No. 7 iridium heat value No. 7 iridium heat value
Throttle Bore Diameter 64mm 62mm
Intake Manifold Single pipe sideflow shorten Single pipe sideflow
Air Intake Diameter 75mm 70mm
Exhaust Manifold 4-to-2 4-to-2
Exhaust Pipe Diameter 54mm 54mm
Piston RRC 11.7:1 Compression PRC 11.5:1 Compression
Block Height 212mm 212mm


LSD Torque sensitive Helical LSD Torque sensitive Helical LSD
1st 3.266 3.266
2nd 2.130 2.130
3rd 1.517 1.517
4th 1.147 1.212
5th 0.921 0.972
6th 0.738 0.780
Final Gear Ratio -/ 5.062 -/ 4.764
Flywheel ultra lightweight, CrMo steel, 0.054kgm2 mass inertia, Weight : 4.7kg ultra lightweight, CrMo steel, 0.054kgm2 mass inertia, Weight : 4.7kg

The Dream

The fifteen years of dream…hard-core of fans waited, how the Honda build up from the dream into the reality, everything is start from scratch, to seriously challenge many ‘performance-cars’ out there! Before we go further, some K series trivia: first released in 2001, Over 10 years Honda has released more than 10 versions of K20 engines, two numbers behind the letter indicates the displacement(ex; 20,23,24), and the following letter and number indicate the version (ex; A, A3, A4, A6, Z2). All K-Series have the i-VTEC badge, Honda describes i-VTEC as a combination of VTEC and VTC, however the way i-VTEC operates is not the same on all K-Series. To describe about i-VTEC technology, maybe I need to open new entry like I did on VTEC, but read VTEC and watch below video will help a lot,



But I just to focus on the real deal K series version that attached on JDM Honda Civic FD2 Type-R, let see what they do to optimize K series engine potential,

Porting of the Intake & Exhaust Valve Ports Using Techniques From the NSX

To decreased drag force, special surface coating as used in the Honda NSX is applied to the cylinder head ports (intake / exhaust).

For racing engine, technician will mirror polish the cylinder head ports like Honda done for the previous Civic type R B16B engine to increase intake efficiency using traditional method. However, this new Civic type R engine uses a special resin coating on the mold of the ports when casting the cylinder head to make the surface smooth, this reduces roughness by 40%, increasing an approximate output of 2PS.

Piston and Connecting Rods


One of the keys to tuning a NA engine is the piston. In order to increase the compression ratio, aluminum, pent-roof-type pistons were used. The piston skirt was made lighter in order to lessen the inertial mass. Since lightening the piston causes the piston “neck” to rock back and forth, a molybdenum coating (also used in the NSX) was applied to lessen friction.

In order to increase compression ratio, the head of the pistons were increased, about 2mm, from 11.5:1 (PRC) to 11.7:1 (RRC), The picture above shows you the piston differences between JDM Intergra DC5 Type R K20A (PRC) – left and JDM Civic FD2 Type R (RRC) – right.

Compressing the fuel and air will make them burn faster, more cleanly and much more efficiently than lower-compression engines, since power is a torque × rotational speed, power is increased as a result. Considering all the advantages of high compression, one might wonder why anyone would not use a high compression ratio. The answer is simple: The increased heat density of the compressed gas will cause the fuel to begin combustion without ignition by the spark plug, resulting in an undesirable burn pattern. This detonation, or “knock”, is often heard as a pinging noise and can cause severe damage to your engine. In other words, the high compression ratio = fight against knocking. How Honda handle this issue? The answer is, the Civic TYPE R, as well as takes advantage of the superior cooling performance of K20A engine and the special Honda combustion chamber shape and flow of the air-fuel mixture design.

Furthermore, connecting the crankshaft and pistons in order to achieve a high rotation and high output,
Honda used lightweight, high-strength connecting rod. Just like the GSR/ITR rod bearing, the K-series rod bearings also feature the friction reducing coating that consists of molybdenum adopt by Honda racing engines technology to reduce friction loss at the high speed.


The crank is Honda’s typical overbuilt forged unit, to ensure the high rigidity, even at high rotation, Honda used high strength material to maintain excellent accuracy rotational, vibration is reduced suppress power loss, durability is improved.

Additional balancing weights were added on number 1 and 4, and allows for smooth, high-rpm revving — making it a 8-weight, fully-balanced crankshaft.


K20 block height : 212 mm, made of aluminum alloy, it’s a beefy unit, heavily ribbed and gusseted for extra strength.

Good feature of high-performance engine also depends on the quality of the cylinder block. Many things that need to be consider, such as the shape of the crank case, suitable for high output, lightweight, rigidity, operate smoothly when high load, etc.

The Honda Civic TYPE R has been developed over many years poured thoroughly high rotation and high-output technology, the four-cylinder engine of Honda have been equipped with an engine block which can be called the ultimate. The center of the crank shaft axis is divided into upper and lower engine block.  Instead of opening the entire wall surface of the block, the crankshaft hole with a considerable thickness, gave the best reinforcement by dividing the vertical half and it’s to enhance the rigidity of the engine block.

The lower block was molded as a unit an outer wall of the block and the bearing portion of the crankshaft, especially a ladder frame structure, to have high rigidity. With these, as well as improve the rigidity of the engine block itself, it’s also enhanced coupling rigidity of the transmission, and improves the rigidity in the entire powertrain. This design also to reduce the loss of power, and has secured excellent durability.

Valves and the Valve Springs

JDM DC5 and FD2R share the same valves and the valve springs, that precisely and strong enough to withstand with 9000rpm!

Type R intake dual valve springs (both intake and exhaust side) are specially made to work with Type R lightened intake valves for higher lift and rpm specifications and to prevent valve float and maintain valvetrain stability at high RPM.

Intake Manifold

Air sucked from the throttle, then intake manifold will distribute air to each plenums. It is an important part that influences the intake efficiency of the engine, it is no exaggeration to say how the design of this part is telling the characteristics of the engine.

That of the Civic TYPE R, the short type of single pipe equal length and straight up the shape. This is demonstrated intake efficiency with excellent high rpm clearly, the thing that has been designed to “go around” well to the engine. To give better breathing when needed at the high rotation, at the moment when the intake valve is opened, the maximum use of the air speed increased by inertial force could be achieve, it’s pushing into the air cylinder vigorously.

The ideas of flow capacity, flow velocity and flow quality was developed in experience and continued challenge to race for many years, turn on the know-how of high speed engine development, increasing the intake efficiency. It can be the intake manifold far focused on high rotation by VTEC, because is switched at 5,800 rpm.

While generated by the high speed of 8,000 rpm the same as the Integra DC5 TYPE R, the highest output of Integra DC5 TYPE R maximum torque is 206N · m [21.0kgf · m] / 7,000 rpm, when Civic FD2R is 215N · m [21.9kgf · m] / 6,100 rpm, that mean, the intake manifold generate high torque at the low rpm, by improving quality control.

The comparison with aftermarket intake manifold, using dyno test,  K-Series Intake Manifold Shootout – Kapow! .

Exhaust system

Back pressure caused by the exhaust system (consisting of the exhaust manifold, catalytic converter, muffler and connecting pipes) of an automotive four-stroke engine has a negative effect on engine efficiency resulting in a decrease of power output that must be compensated by increasing fuel consumption.

In order to reduce the back pressure, the exhaust manifold has be design to narrow-angled shape (compare with DC5), full-length and straightened dual exhaust pipe,  

And using valve-operated variable length silencer (compare with DC5), to control back pressure and sound from the low to high RPM.


The transmission gearbox takes the output from the engine flywheel, multiplying it with the selected gear ration before delivering to the front driving wheels for maximum lap times on the circuit. For sharper acceleration, gears 1 to 3 are revised with the approximately 3% overall shorter (higher) ratio. To exploit the higher power and torque of the new K20A engine, gears 4,5, and 6 are revised for an approximately 1% taller (smaller) ratio.

Due to the aggressive cam profiles, the power delivery of the new Civic TYPE-R’s K20A spec R engine has a dip, a ‘hole’, in the middle of its power chart around the 3000 to 4000RPM range. The individual gear ratios for gears 1 to 5 are chosen so that shift-ups from red-lines to the next higher gear will drop the engine RPM right into the power band – after the ‘hole’ and where power and torque are increasing.

The gearbox also receives new synchros. For gears 1 and 2, triple cone synchros are used. Third gear uses dual carbon cones. Fourth gear uses dual cones. And finally fifth and sixth gears use single carbon cones. An advanced high rigidity aluminum casing is used for the transmission. For improved lubrication at high RPM, the new casing features resin baffle plates, to avoid oil starvation at high cornering speeds. Finally, a short stroke shift linkage contributes to a sporty shifting feel. Source:

To greatly reduce the mass inertia of the crank system, Civic TYPE R adopt ultra-light as used in the racing engine “forging Flywheel”.

The Body/ Chassis

A stiffer and lightweight body compliments the powerful engine of the Civic Type R. Better stability is achieved with an extensive use of high tensile steel sheets that create a stronger structure. This makes it 50% more rigid and 11.6kg lighter than the Integra Type R.

 Light-weight conversion

A. Front bumper beam converted to aluminum
B. Dashboard insulator excluded
C. Floor melt set excluded
D. Middle floor under cover excluded
E. Rear glass sheet converted to thinner sheet glass
F. Front license bumper base unified

*Weight reduced: 13.4kg, total vehicle weight without air-conditioning: 1250kg

 Rigidity enhancements

1. Front bulkhead adhesive added
2. Upper cross main bar board thickness increased
3. Sub frame adapter unit board thickness increased
4. Rear floor stiffener and welding point added
5. Rear floor adhesive added
6. Rear stabilizer adapter unit board thickness increased

*Weight increased: 1.8kg

 The End

The FD2 Civic Type R ceased production in August 2010 because of failing to meet upcoming emission requirement. Following the previous success of introducing the FN2 Civic Type R from Europe in 2009, another batch of FN2 Type R with minor update is available in fall 2010. The FN2 Type R has 197 hp (147 kW) vs the 225 hp (168 kW) output in the FD2 Type R. Source :  Sad ending…


Spoon Sports ‘Speed Shop Type-One’ – The Art of Car Maintenance

Posted in My Automotive Life | No Comments »

As Honda enthusiast, We’re can’t run talk about good performing and maintaining our beloved Honda’s, Spoon Sports is a BIG name for Honda fan out there, they produced great quality performing parts and has earned a reputation for offering the highest form of service In the world of Honda tuning, but, how about Type-One? What their relationship with spoon? You, are really Honda fan out there will say “Who doesn’t know them? You idiot!”,  But do you really know what they actually do in their workshop? They perform maintenance art! They are a true artist, I hope, one day, I will be that level. To know them better, read theirblog –> Type-One Official Blog, but sadly, only available in Japanese language.

You are newbie? Don’t worry, let’s read a little bit about history subject, for hardcore, you can skip.

Spoon Sport History

Spoon Sports is a Japanese company formed in 1988. It is an engine tuner and parts manufacturer specializing in cars made by Honda. Their concept is to create vehicles that provide “total technology” and “real comfort”. The company logo of Spoon Sports is a play of words on Ichishima’s name. Ichishima’s first name is Tatsuru, and the Japanese name for crane is Tsuru, hence the logo of a crane. “The company name Spoon comes from an impregnable fortress of a corner at Suzuka Circuit 20 years ago.”

The company tunes and races Honda vehicles in numerous endurance races, and, additionally sells aftermarket parts to automotive enthusiasts. Spoon Sports provides many aftermarket parts for Honda cars. These include powertrain, suspension, aero-parts, wheels, drivetrain, braking system, cooling system and so on.

Some of the races Spoon has competed in include:

The founder, Ichishima Tatsuru was originally a racer. So just like Honda themselves, racing has always been in Spoon Sport’s blood. The first car that Ichishima-san raced was a Honda Civic.

Spoon was founded to specialize in tuning Honda engines in Takaido, Suginami, Tokyo along the Kōshū Kaidō Avenue. In 1988, Spoon started house development of a racing computer for use on Honda vehicles. Spoon designs and builds both major and minor components for Honda engines for use on Spoon Sports racing vehicles as well as for sale to the general public.

In 1996, Spoon began selling Honda B engine assemblies which Spoon precision balances and blueprints to ensure optimum performance during endurance racing. Since then, Spoon Sports have moved on to tune other Honda engines like the venerable K20A from the Civic/Integra and the L15A from the Honda Fit/Jazz.

In 1997, Spoon moved to a brand new building in Ogikubo, Suginami. They also began providing “Engine Lectures” as a part of their customer service program.

Type-One History

In 2001, Spoon opened “Speed Shop Type-One” across the street from the Spoon headquarters. This shop specializes in modifications to Honda’s “Type-R” vehicles and other performance oriented Hondas which include the Civic Type-R, Integra Type-R, Accord Euro-R and NSX-R. However, Spoon has also modified non-R vehicles like the Civic SiR, Honda S2000, Honda Legend and the Honda Fit/Jazz. The racing versions of the 2001 S2000 and 2003 Honda Fit models (both in Spoon’s then-current blue-and-yellow livery) were featured in Gran Turismo 4.

Type-One is Ichishima’s vision of how a Spoon Sports dealer should be. And that vision is the offer of a “complete tuned car, not just individual parts thrown in without consideration of whether they will work in harmony or simply interfere with each other.” Also, Ichishima wants to make it known this shop was not created to sell parts, but to provide customers with Type-One’s installation skills and know-how of Spoon products.

-END of history subject-

I would recommend you to read this article –> INTERVIEW>> TATSURU ICHISHIMA, below is my highlight Q & A, all credit and copyright belong to ,

Speedhunters: How and why did Spoon Sports begin and what was the main philosophy and objectives that you set out for the company?

Ichishima:  Around 1980 I began to realize that enthusiasts were starting to get interested in bringing their cars to the track. Back in those days soukoukai (track day) events where people took their street-registered cars to the local circuit didn’t exist, but I knew it would be something that would pick up quickly so that’s when I began to get the initial idea. At that time I was doing durability and development testing for Honda under the “Tatsuru Ichishima Company,” then eventually in 1988 I set up Spoon Sports as a separate company that developed and sold tuning and racing parts. As for the concept it was and still is very simple, make cars fun, not fast. Obviously slow cars are not fun but what I mean is to create a well-balanced package that doesn’t break or fail and thrills in every way. A good balance between power, handling and light weight. For example a GT-R is exciting because of its power but then in a corner, a small well prepared Civic will easily overtake it. So balance through tuning is our philosophy.

Speedhunters: I’m sure a lot or readers will be wondering what the difference between Spoon Sports and Type One is. Can you give a brief explanation?

Ichishima: Spoon takes care of parts development, special works and testing while Type One is where the end user takes his car for maintenance and tuning, like a speed shop or workshop. Type One opened back in 2000.

Speedhunters: At Speedhunters we are lucky enough to have readers that follow us from around the world. You obviously travel a lot and have had a chance to observe how people modify and personalize their cars. What do you think of the various styles you have see in the US, Europe, Australia or other parts of the world? How do they compare to Japan?

Ichishima: It’s hard to say by individual country but generally it’s obvious that a lot of passion exists and enthusiasts enjoy power. I’m not saying that’s bad but for example shooting for 500 HP in a car that is not designed to take that level of performance will lead to failures. I think some Japanese people are different, they tend to focus more on the background and mechanical side of a car to fully understand its history and lineage. It’s just a different way of appreciating cars.

Speedhunters: What is your favorite Honda?

Ichishima: Uhm, (laughs) I can’t really choose one car but one of my most favorite is the Civic.

Speedhunters: Why?

Ichishima: Well first of all it’s affordable and is small and compact.

Speedhunters: Which particular model of the Civic?

Ichishima: Uhm the old EG, also the EK. Up until then it was a three-door hatch back, useful to carry people and stuff but was sporty at the same time, enjoyable to drive. It was the first car in Japan to offer all these factors. That’s why I like it.

Speedhunters: What is your favorite Honda engine?

Ichishima: The B16A and B16B and also the B18C, I really like the whole B-series of engines. They are real screamers! (lots of engine screaming sounds follow!) I’ll give you an example. Ferraris and Lamborghinis are like women that are great in bed, but not so great at cleaning the house or cooking.

The B-series is a more balanced engine; it’s great in bed but also great at doing the chores. Frugal and civilized. You get the idea? Also, the most important thing about an engine is the noise and sound (more engine noises follow!). It has to give you goose bumps. Anyway, I like non-gimmicky cars, I like simple cars and engines.

-END of interview-

Wow! Honda Civic Eg is one of Ichisma favorite car, make me proud of my beloved EG

Since Honda already builds its engines to very high standards, it’s hard to improve more without compromising longevity and usability, We’ve all heard stories of people bolting on pod filters and large bore exhausts to their Honda in the pursuit of power gains when, in actual fact, they were achieving the exact opposite. You certainly can’t disrupt the fine-tuning and precise balance between intake and exhaust on high-compression naturally aspirated engines. It’s precisely this way of thinking that has pushed Spoon to further fine-tune Honda powerplants, rather than “disturb” their natural balance.

You may think engine build is simple as just assemble each parts. But the most important thing when you build engine is how build it to. For example, if built a standard engine with more care like cleaning individual parts carefully and measure those parts correctly, the engine should perform better even if it’s standard specification. Even it will be possible to change character of the engine. This is what their specialty, fine-tuning and took restriction away from the engine, from what I read from their browser, their skilled engine builder  spends three days for cleaning and parts and build engine as same as racing engine standard.

Below is several pictures I take from Type-One Official Blog &, all credit and copyright belong to them. I hope you will find some idea and inspiration,


Honda Civic EK9 Type-R B16B – The Art of Automotive Engineering

Posted in My Automotive Life | 7 Comments »

Yes, I know…this is lame topic, but, as engineering student, Honda Civic Type-R production is always give me a great inspiration “The quality never know the bound”! so, you can say, this is my tribute entry. I collected the fact and data from the internet. I recommend you to read this article if you are newbie about Honda VTEC before you scroll down.

This topic I would like to dedicate to the first model of Honda Civic Type-R , EK-9, the legendary, the legacy, the power of dream!




The Honda Civic Type R is the highest performance version of the Honda Civic made by Honda Motor Company of Japan. It features a lightened and stiffened body, specially tuned engine and upgraded brakes and chassis. Red is also used in the interior to give it a special sporting distinction and to separate it from other Honda models. In Japan, a one-make series of Honda Type R cars where privateers can purchase an off-road Type R and compete in a series championship is a stepping stone for many aspiring racing drivers.  Source :

1st generation (EK9 chassis)

The first Civic to receive the ‘Type R’ name was based on the 6th-generation ‘EK’ Civic. The contributing base model was the JDM Civic 3-door hatchback called SiR, code named EK4. Like its big brother the Integra Type R DC2/JDM DB8, the Civic SiR’s transformation into a Type R was achieved by working on the base model and improving it to Honda’s idea of a car capable of high performance on the circuit.

The first Civic to receive the Type R badge was introduced in 1998 as the EK9. The EK9 shared many characteristics with the Integra Type R DC2/ JDM DB8 such as omission of sound deadening and other weight-reduction measures, a hand-ported B16B engine, front helical limited-slip differential and close ratio gearbox etc.. The B16B engine boasted one of the highest power output per litre of all time for an NA engine with 185 PS (136 kW; 182 hp) from a 1.6L. For the first time, a strategically seam welded monocoque chassis was used to improve chassis rigidity. The interior featured red Recaro seats,red Recaro door cards and red Recaro floor mat, a titanium shift knob and a Momo steering wheel. In 1999 the Type Rx was introduced featuring a CD player, body colored retractable electric door mirrors, power windows, auto air conditioning, key-less entry unlock system, aluminum sports pedals, and a carbon type center panel. The SiR badge from the previous 2 generations was ceded to the EK4 Civic as a mainstream sedan and hatchback which was sold in huge numbers across the globe due to its relatively low cost, practicality and everyday usable street performance/drivability.

– End of Introduction –

To make you clear, I’ll put the data that I collected from WWW, this the comparison between base model (EK-4) was also the great car and Type-R model (EK-9) improve from the great car and engine!


Model Variant VTi-R TYPE R
Car Series EK4 EK9
Year 1995-1998 1997 – 2001
Doors and Body Style 3DR Hatch 3DR Hatch
Engine Size 1595cc B16A2 1595cc B16B Spec R
Cylinders 4 4
Transmission 5M 5M with LSD
Standard Features 15″ Alloy Wheels, 4 Speaker Stereo, ABS (Antilock Brakes), Adjustable Steering Col. – Tilt & Reach, Air Conditioning, Airbags – Driver & Passenger (Dual), Central Locking, Engine Immobiliser, Paint – Metallic, Power Door Mirrors, Power Steering, Power Windows, Radio Cassette, Sunroof – Electric and Tilt, Suspension – Sports, Seats – Sport bucket, Centre Console with dual cup holder, Rear seat head restraints, Digital Clock 15″ Alloy Wheels, Rear Spoiler, Momo Steering Wheel, Recaros
Optional Features Central Locking, Power Windows, Power Mirrors, Power Steering, Radio Cassette with 4 Speakers, Dual Airbag Package, ABS
Cosmetics Leather wrapped MOMO Steering wheel with SRS airbag, Red Carpet, Red Arm rests, Red Floormats with Type R badging, Titanium gear shifter, Red stiched boot, Carbon centre dash console with Type R badge, Type R Instument cluster, Carbon dash bezel, Emergency Flare, No Coin holder, Red Recaro seats, Bodykit, Red exterior badging, Colour coded exterior panels, UV cut glass, Privacy glass,
Red engine head cover,
Aluminum radiator,
Helical LSD
Front Brakes Vented Discs (262mm), ABS Larger Vented Disc (282mm), ABS (optional)
Rear Brakes Disc (242mm) Disc (262mm)
Wheel Dimension 195-55-15 195-55-15 Enkei 5 stud PCD
Turning Circle 9.8m 9.8m
Tank Capacity 45 litres 50litres
Exterior Length 4180mm 4185mm
Exterior Width 1695mm 1695mm
Exterior Height 1375mm 1360mm
Front Track 1475mm 1480mm
Rear Track 1475mm 1480mm
Wheel Base 2620mm 2620mm
Front Suspension Ind; double wishbones with coil springs gas damper and stabiliser bars Ind; double wishbones with coil springs gas damper
Rear Suspension Ind; double wishbones with coil springs gas damper and stabiliser bars Ind; double wishbones with coil springs gas damper and trailing link
Kerb Weight 1105kg 1059kg (97 Spec) 1089kg (98 Spec)
Ground Clearance 106mm 105mm
1/4 Mile time 16.2 15.5

Power Section


Engine Type B16A (1992-1995)JDM B16B Spec R
Bore x Stroke 81×87.2mm 81×87.2mm
Maximum Output 170ps/7800rpm 185ps/8200rpm
Maximum Torque 16.0kg-m/7300rpm 16.3kg-m/7500rpm
Displacement 1595cc 1595cc
Compression 10.4 10.8
Maximum RPM 8000rpm 8400rpm
Valve Timing at 1mm lift            IN Open/Close

EX Open/Close

Valve Lift (Max Lift)
IN 10.7mm, EX 9.4mm IN 11.5mm, EX 10.5mm
Inlet Valve Diamter 33mm x 2mm 33mm x 2mm
Spark Plug Type Heat Rate #6 Heat Rate #7 platinum
Throttle Bore Diameter 60mm 60mm
Intake Manifold Single pipe sideflow Single pipe sideflow
Air Intake Diameter 65mm 65mm
Exhaust Manifold 4-to-2 4-to-2
Exhaust Pipe Diameter 48.6-50.8mm 57.2mm
Silencer Flow Capacity 98liter/sec 115liter/sec
Cam Profile

Max Lift (IN/EX)Open Timing (IN/EX)Close Timing (IN/EX)

10.7/9.4BTDC15/BBDC40ABDC 45/ATDC 7 11.5/10.5BTDC 18/BBDC45BTDC 45/ATDC 10
Connecting rod bearing width 19.5 mm Tetra-methyl lead coated crank
17.5 mm
Connecting rod Chrome carbon steel High chrome carbon steel
Piston Molybdenum coated low friction
Block Height 263mm 270mm


LSD None Helical LSD
Code Y2 S80 (S4C)
Gear Ratio
1st 3.230 3.230
2nd 2.105 2.105
3rd 1.458 1.458
4th 1.107 1.107
5th 0.848 0.848
Reverse 3.000 3.000
Final Gear Ratio 4.400 4.400


The Masterpiece of Art!

So, what actually they (Honda’s Engineer) do? To create such a masterpiece, not an easy task, to create masterpiece (B16B)  from already masterpiece (B16A) is very difficult task! And I’m here not only talked about power, because, with ‘aftermarket’ it’s very easy to archive as long as you have money, I’m more focus about balance, harmonic, durability, research and art!

On the below are the power curves for B16A 170ps versus B16B. Note the big gain in power after 6000rpm, the VTEC switch-over point between mild and wild cam profiles. The gain at extreme high rpms is readily apparent on the curves. Source :

Honda tune the R by hand

This is one of the factors why R are so limited, Honda using their experience and knowledge gained in the racing field  and making use of it in their production lines for street cars. The Civic’s VTEC B16B type engine retained its stock displacement, but Honda increased its horsepower from 170 (B16A) to 185 (B16B). It’s only *15* horses more, but those 15 horses were really tweaked out using Honda’s formula 1 knowledge — from an engine that was already getting 100 horsepower per liter!

Currently, production line engines and engine parts are made by computer-guided NCR machines, and are of very high quality. However, Mr. Fumiyasu Suga (Type R’s assistant chief engineer) believes that in order to make a true race engine, some parts must be built/assembled by hand. In specific, the assembling of the engine, balancing parts, and porting and polishing need to be done by hand. Amazingly, all Type R engines are built this way. Source :


One of the keys to tuning a NA engine is the piston. In order to increase the compression ratio, aluminum, pent-roof-type pistons were used. In order to keep a good precision of mass, the aluminum pistons were forged. The piston ring was given more space to move around in, and to prevent piston “head” shake caused by the extra space, a molybdenum coating (also used in the NSX) was applied to lessen friction. Source :

The piston skirt was made lighter in order to lessen the inertial mass. Since lightening the piston causes the piston “neck” to rock back and forth, a molybdenum coating was applied to lessen friction.

In order to increase compression ratio, the side molds of the pistons were increased, from 10.4 to 10.8, The picture below shows you the differences between JDM Civic Type R B16B and JDM B16A Sir2 (EK4) P30.

Injectors installed on the underside of the pistons allow for improved cooling, and prevent the pistons from getting “burned-in”.


For endurance, B16B used B18C spec R’s cylinder block, that mean it’s destroked from B18C and using same timing belt (Honda PN: 14400-P72-014, not compatible with B16A (14400-P2T-004)), also the engine bridge girdle and cylinder head bolts (90006-P72-003, 11×164) vs from B16A (90006-PG6-003, 11×155).

Connecting Rods

The con rods are specially made for the Type R. The precision weight of these con rods are 2 levels above that of on-line production models. The weight differential between all four rods is so small that it is negligible, and all contacting surface areas are finished off with a race-car, mirror finish, and is connected to a fully balanced crankshaft. Furthermore, the assembly of the con rods and the crankshaft play an important role in attaining the high rpm’s. In order to ensure perfect assembly, the engine is taken off-line and these parts are assembled by hand. A custom con rod micrometer gauge is used, and the stretching of the con rod bolt is taken into account for as the connections are tightened. This is something no machine can do, and this ensures that there aren’t any unwanted vibrations at high rpm.  Source :

Custom-made connecting rods for the Type R. It is made to withstand the higher rpm’s, and is still lighter than the stock parts. These Type R parts are made with such precision that the weight difference between all four rods is so small that it is negligible.

B16B(77.4mm crankshaft and 142.42mm connecting rod) vs B18C (87.2mm crankshaft and 137.9mm connecting rod)

Hand Job Porting

The video below show the porting job for B18C 96spec R, the procedure is similar for B16B, by Honda Motor Co.,Ltd. Suzuka Plant  mechanic,

Naturally, porting and polishing excessively won’t yield good results — it will only upset the balance between displacement and peak rpm’s. Some basic physics explained… In any cylindrical enclosure/piping, the closer air is to the metal wall, it will flow slower, and the closer it is to the center of the cylinder, it will flow faster. As rpm’s increase, slight variations in the enclosure will cause for serious air flow disturbances. Logically speaking, a straight, cylindrical port would prevent any problems of air-flow disturbance, but with street cars and their limited engine bay space, the port has to be bent.

The stock port is built to within such precision that it can already withstand rpm’s of up to 7,000 rpm without creating any unwanted air-flow disturbances, but once it reaches 8,200 rpm, the engine struggles to keep the air flowing smoothly. To augment this problem, two of the best mechanics at Honda were selected and assigned to manually port and polish the engine components. Though this limits production to 25 engines a day, this allows for the engine to reach 8,500 rpm, and respectively, 185 horsepower.

Valves and the Valve Springs

Next, the valves and the valve springs needed to be upgraded in order to be able to withstand the high rpm’s and the increased fuel injection. In order to increase air flow efficiency, the angle of the valve seat opening was tightened from 60 to 45 degrees. Also, bigger and lighter valves help to deliver more fuel. Instead of making the valve bigger, Honda engineers made the cone bigger and reduced the stem radius even further. In specific, the underside of the valve cone was shaved to its limit, and the valve shaft width was decreased from 5.5mm to 4.6mm — making the valve 12% lighter than stock. Amazingly, the valves are made so precisely that their static balance differential is basically 0.0. We jokingly asked Mr. Suga what he would do if Honda’s parts manufacturers sent over valves that had weight differences. His reply was quick and simple. “We would toss them out.” Hm… very strict. Past 8,000 rpm, other valve-related problems occur. Such problems include surging, jumping, bouncing, etc… In order to prevent such problems, the valve springs are made by dual-bound springs. Furthermore, Honda used non-cylindrical, “flat” springs in order to keep the spring height near-stock, and still increase rebounding power. Source :

B16B B18C Type R Intake Valves are same diameter as regular B-series valves but have distinct advantages in being 12% lighter in mass, with noticeably thinner valve stem from 5.5mm to 4.6mm, hence larger cone area and an improved contour for better air flow. Type R lightened intake valves are made so precise that their static balance differential is basically 0.0. Type R intake dual valve springs are specially made to work with Type R lightened intake valves for higher lift and rpm specifications. They are non-cylindrical, flat springs with increased rebounding power while their spring height are still near-stock. This will help to prevent valve-related problems past 8000 rpm such as surging, jumping, bouncing etc.

In order to prevent engine knocking at high rpm’s, NGK’s high-spark #7 platinums are used. Honda is so meticulous with its Type R production that it actually coats the spark plug tip with silicone so the spark plug doesn’t collect any unwanted deposits during the stop-and-go of transportation. (Wow… does that help any?)


The camshaft profiles (wild cam) change from B16A2 and B16B are :

Cam Profile

JDM B16A 170ps

B16B 98R

Max Lift (IN/EX)



Open Timing (IN/EX)



Close Timing (IN/EX)



BTDC = Before Top-Dead-Center, BBDC = Before Bottom-Dead-Center

ABDC = After Bottom-Dead-Center, ATDC = After Top-Dead-Center

The camshaft lift amount was changed for both intake and exhaust valves. The intake lift was increased from 10.7mm to 11.5mm, and the exhaust lift was increased from 9.4mm to 10.5mm. To compensate, the intake opening timing was increased from 15 to 18 degrees before piston apex, and closing timing was increased from 40 to 45 degrees after the piston reaching base. Likewise, the exhaust opening timing was increased from 40 to 45 degrees before the piston reaching base, and the closing timing was increased from 7 to 10 degrees after piston apex. By doing so, the valves remain open longer — allowing for more air to enter the combustion chamber.


To make sure the engine has a enough breath at the high RPM, the intake manifold was being modified (High-RPM type), the body is  bigger and the plenums are short and fat compare to the B16A intake manifold.

The throttle bore diameter for B16B is identical to B16A at 60mm. This means that enlarged throttle bodies for B16A might not be an optimal mod or that a compromise in power delivery might result, eg loss of low-end power in return for gain in high-end power.


Unlike the base crankshaft, additional balancing weights were added on number 1 and 4, and allows for smooth, high-rpm revving — making it a 8-weight, fully-balanced crankshaft.

The attachment point of the connecting rods to the crankshaft uses a new, adjustable connector that allows the mechanics to manually adjust the connection using a micrometer so they can compensate for the stretching of the connecting rod bolt.

Exhaust system

In order to make exhaust air flow smoother, there are no sharp angles in the header. Furthermore, in order to lighten/strengthen the parts, stainless steel was used.
Impossible to do in mass-production, all exhaust piping is welded together with no sharp edges throughout. Also, the piping was upgraded to 57.2mm throughout to increase air flow.

The muffler is a multi-chamber design, and does a wonderful job of dissipating sound. However, the funnel-shaped piping in-between the chambers makes it a very free-flowing exhaust.


Adopt a lightweight flywheel dedicated to the type R transmission , was approximately 10% lighter from the base model. In addition, to reduce the stroke select direction, with the shift direction, change also provides a sporty feel light and applied in conjunction with a double-cone synchronizer speed to the second speed.

Installed with the torque-sensitive helical LSD, to provide excellent traction when cornering. With the improvement of turning limit, the result is excellent acceleration and  less understeer, a feel good sentiment turning.

cut model of the helical LSD

The Body

The main points of the body strengthening.

“In overview, over 60 engine-related parts were changed or entirely re-designed for the Type R. We asked Mr. Suga for any other advice on tuning the Type R any further. He replied, “I would prefer that people don’t try to further tune the Type R. No, actually, they shouldn’t try. Each upgraded part works in perfect harmony, and fiddling with the factory setting will only lead to a decrease in performance.” It’s probably safe to say that the Type R is a rare, “fully tuned” and “stock” automobile. ” Source :

 I hope you will get some inspiration too!